If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5r^2+15r=0
a = 5; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·5·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*5}=\frac{-30}{10} =-3 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*5}=\frac{0}{10} =0 $
| 69+x=60 | | -10(x−1)=11−10x | | 2(7p+6)-10p=-9+8p-7p | | A(t)=-1.4t+96 | | 2x+3=0.5(6+4x | | 2x+15=7x-6=180 | | 7^-x=3 | | 7(x–4)=3x–10 | | (x-5)^2+8=-16 | | 5x3/2=5/4 | | (x–5)2+8=-16 | | 8x-30=-x-4 | | 4.2=x+6 | | (x–5)^2+8=-16 | | 7x+4x-34=85-6x | | F(x)=6x-10x=5 | | 5(x-4)=7(2x1 | | 6(x+3)^2+7=301 | | 4^x+2=25 | | w+8=180 | | w+8=90 | | 8y-7+12y+6=180 | | x=10+5/14 | | 552-24x=6x | | 7y-8=21 | | 8y-7=12y+6 | | 14x=145 | | 551-24x=6x | | 8y−7=12y+6 | | 3=2(k-1)-5 | | 5x+9-69=115-9x | | -30-6a=-36 |